Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.894
Filter
1.
Environ Health Perspect ; 132(4): 47011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656167

ABSTRACT

BACKGROUND: Policymakers have become increasingly concerned regarding the widespread exposure and toxicity of per- and polyfluoroalkyl substances (PFAS). While concerns exist about unequal distribution of PFAS contamination in drinking water, research is lacking. OBJECTIVES: We assess the scope of PFAS contamination in drinking water in New Jersey (NJ), the first US state to develop regulatory levels for PFAS in drinking water. We test for inequities in PFAS concentrations by community sociodemographic characteristics. METHODS: We use PFAS testing data for community water systems (CWS) (n=491) from the NJ Department of Environmental Protection (NJDEP) from 2019 to 2021 and demographic data at the block group level from the US Census to estimate the demographics of the NJ population served by CWS. We use difference in means tests to determine whether CWSs serving "overburdened communities" (OBCs) have a statistically significant difference in likelihood of PFAS detections. OBCs are defined by the NJDEP to be census block groups in which: a) at least 35% of the households qualify as low-income, b) at least 40% of the residents identify as people of color, or c) at least 40% of the households have limited English proficiency. We calculate statewide summary statistics to approximate the relative proportions of sociodemographic groups that are served by CWSs with PFAS detections. RESULTS: We find that 63% of all CWSs tested by NJDEP from 2019 to 2021 had PFAS detections in public drinking water, collectively serving 84% of NJ's population receiving water from CWSs. Additionally, CWSs serving OBCs had a statistically significant higher likelihood of PFAS detection and a higher likelihood of exposure above state MCLs. We also find that a larger proportion of people of color lived in CWS service areas with PFAS detections compared to the non-Hispanic white population. DISCUSSION: These findings quantitatively identify disparities in PFAS contamination of drinking water by CWS service area and highlight the extent of PFAS drinking water contamination and the importance of PFAS remediation efforts for protecting environmental health and justice. https://doi.org/10.1289/EHP12787.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , New Jersey , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Monitoring
3.
Bull Environ Contam Toxicol ; 112(5): 67, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668895

ABSTRACT

To date, there is an increased risk to public health and the environment due to the presence of pharmaceutically active compounds within drinking water supply and distribution networks. Owing to this, a direct injection-HPLC/MS-MS method was developed for the simultaneous determination of 16 active pharmaceutical compounds in tap water samples: amoxicillin, ampicillin, cephalexin, cefotaxime, cefuroxime, ciprofloxacin, clarithromycin, clindamycin, chloramphenicol, cyproterone, erythromycin, flutamide, spironolactone, sulfamethoxazole, tamoxifen, and trimethoprim. Limits of detection (LOD) ranged from 0.2 to 6.0 µg/L while quantification limits (LOQ) from 0.3 to 20 µg/L. Recovery percentages were between 70 and 125%. Total analysis time was short, with all compounds being resolved in less than 2.1 min. Of the 22 tap water samples collected and analyzed, the highest concentrations corresponded to amoxicillin (147 µg/L) and ciprofloxacin (44 µg/L). The findings could set a precedent for establishing safe levels of these compounds and increasing standards for tap water quality in this region.


Subject(s)
Drinking Water , Environmental Monitoring , Tandem Mass Spectrometry , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Drinking Water/chemistry , Environmental Monitoring/methods , Pharmaceutical Preparations/analysis , Limit of Detection , Ciprofloxacin/analysis , Water Supply , Amoxicillin/analysis
4.
Environ Monit Assess ; 196(5): 476, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662019

ABSTRACT

The ingestion of Ti-containing nanoparticles from drinking water has emerged as a concern in recent years. This study therefore aimed to characterize Ti-containing nanoparticles in water samples collected from four water treatment plants in Taiwan and to explore the challenges associated with measuring them at low levels using single particle-inductively coupled plasma mass spectrometry. Additionally, the study sought to identify the most effective processes for the removal of Ti-containing nanoparticles. For each water treatment plant, two water samples were collected from raw water, sedimentation effluent, filtration effluent, and finished water, respectively. Results revealed that Ti-containing nanoparticles in raw water, with levels at 8.69 µg/L and 296.8 × 103 particles/L, were removed by approximately 35% and 98%, respectively, in terms of mass concentration and particle number concentration, primarily through flocculation and sedimentation processes. The largest most frequent nanoparticle size in raw water (112.0 ± 2.8 nm) was effectively reduced to 62.0 ± 0.7 nm in finished water, while nanoparticles in the size range of 50-70 nm showed limited changes. Anthracite was identified as a necessary component in the filter beds to further improve removal efficiency at the filtration unit. Moreover, the most frequent sizes of Ti-containing nanoparticles were found to be influenced by salinity. Insights into the challenges associated with measuring low-level Ti-containing nanoparticles in aqueous samples provide valuable information for future research and management of water treatment processes, thereby safeguarding human health.


Subject(s)
Titanium , Water Pollutants, Chemical , Water Purification , Taiwan , Water Purification/methods , Water Pollutants, Chemical/analysis , Environmental Monitoring , Metal Nanoparticles , Filtration , Drinking Water/chemistry
5.
Environ Monit Assess ; 196(5): 475, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662271

ABSTRACT

The potentially harmful effects of consuming potentially toxic elements (PTEs) and microplastics (MPs) regularly via drinking water are a significant cause for worry. This study investigated PTEs (Cd, Cu, Cr, Ni, Pd, Zn, Co), MPs, turbidity, pH, conductivity, and health risk assessment in the water treatment plant in Kielce, Poland. Zn had the highest concentrations throughout the water treatment facility, whereas Cd, Pb, and Co had lower concentrations (< 0.1 µg/L). The order of the concentrations among the specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and Co. The minimum turbidity was 0.34, and the maximum was 1.9 NTU. The range of pH in water samples was 6.51-7.47. The conductivity was 1,203-1,445 ms in water samples. These identified MPs were categorized into fiber and fragments. The color of these identified MPs was blue, red, black, green, and transparent. The minimum and maximum size of the MPs was 196 and 4,018 µm, while the average size was 2,751 ± 1,905 µm. The average concentration of MPs per liter of the water treatment plant was 108.88 ± 55.61. The elements listed are C, O, Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn were the predominant elements seen using EDX. HQ values of the PTEs were less than one for adults and children. The human health risk associated with all detected PTEs revealed that the HQ values exhibit a satisfactory degree of non-carcinogenic adverse health risk. HI values for adults and children age groups were less than one. In most water treatment samples, the carcinogenic value exceeds the threshold value of 10-6. The PTEs and MP concentrations in drinking water should be periodically monitored to minimize consumers' environmental pollution and health risks.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Poland , Microplastics/analysis , Water Purification/methods , Humans , Risk Assessment , Drinking Water/chemistry , Metals, Heavy/analysis , Adult
6.
Sci Total Environ ; 927: 172257, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608912

ABSTRACT

Waterborne pathogens threaten 2.2 billion people lacking access to safely managed drinking water services, causing over a million annual diarrheal deaths. Individuals without access to chlorine reagents or filtration devices often resort to do-it-yourself (DIY) methods, such as boiling or solar disinfection (SODIS). However, these methods are not simple to implement. In this study, we introduced an innovative and easily implemented disinfection approach. We discovered that immersing aluminum foil in various alkaline solutions produces alkali-treated aluminum foil (ATA foil) that effectively adsorbs Escherichia coli (E. coli), Salmonella, and Acinetobacter through the generated surface aluminum hydroxide. For example, a 25 cm2 ATA foil efficiently captures all 104E. coli DH5α strains in 100 mL water within 30 min. Using a saturated suspension of magnesium hydroxide, a type of fertilizer, as the alkaline solution, the properties of the saturated suspension eliminate the need for measuring reagents or changing solutions, making it easy for anyone to create ATA foil. ATA foils can be conveniently produced within mesh bags and placed in household water containers, reducing the risk of recontamination. Replacing the ATA foil with a foil improves the adsorption efficiency, and re-immersing the used foil in the production suspension restores its adsorption capacity. Consequently, ATA foil is an accessible and user-friendly alternative DIY method for underserved communities. Verification experiments covering variations in the water quality and climate are crucial for validating the efficacy of the foil. Fortunately, the ATA foil, with DIY characteristics similar to those of boiling and SODIS, is well-suited for testing under diverse global conditions, offering a promising solution for addressing waterborne pathogens worldwide.


Subject(s)
Disinfection , Drinking Water , Water Purification , Drinking Water/microbiology , Drinking Water/chemistry , Disinfection/methods , Water Purification/methods , Water Microbiology , Water Supply
7.
J Hazard Mater ; 470: 134186, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574664

ABSTRACT

The pervasive presence of nanoplastics (NPs) in environmental media has raised significant concerns regarding their implications for environmental safety and human health. However, owing to their tiny size and low level in the environment, there is still a lack of effective methods for measuring the amount of NPs. Leveraging the principles of Mie scattering, a novel approach for rapid in situ quantitative detection of small NPs in low concentrations in water has been developed. A limit of detection of 4.2 µg/L for in situ quantitative detection of polystyrene microspheres as small as 25 nm was achieved, and satisfactory recoveries and relative standard deviations were obtained. The results of three self-ground NPs showed that the method can quantitatively detect the concentration of NPs in a mixture of different particle sizes. The satisfactory recoveries (82.4% to 110.3%) of the self-ground NPs verified the good anti-interference ability of the method. The total concentrations of the NPs in the five brands of commercial bottled water were 0.07 to 0.39 µg/L, which were directly detected by the method. The proposed method presents a potential approach for conducting in situ and real-time environmental risk assessments of NPs on human and ecosystem health in actual water environments.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polystyrenes/chemistry , Microplastics/analysis , Nanoparticles/chemistry , Drinking Water/analysis , Drinking Water/chemistry , Microspheres , Particle Size , Limit of Detection , Scattering, Radiation
8.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582104

ABSTRACT

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Subject(s)
Drinking Water , Odorants , Spirulina , Taste , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Odorants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Naphthols , Humans , Camphanes , Adsorption , Solid Phase Microextraction/methods , Carbon , Gas Chromatography-Mass Spectrometry
9.
Environ Int ; 186: 108614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583295

ABSTRACT

Recognition of per- and polyfluoroalkyl substances (PFAS) as widespread environmental pollutants and a consequent risk to human health, has recently made the European Union (EU) adopt several regulatory measures for their management. The coherence of these measures is challenged by the diversity and the ubiquitous occurrence of PFAS, which also complicates the EU's endeavor to advance justified, harmonized, and transparent approaches in the regulatory assessment of chemical risks. Our study critically reviews the European approach for the risk assessment of PFAS, by applying a comparative analysis of the current and pending regulatory thresholds issued for these chemicals in water bodies, drinking water, and certain foodstuffs. Our study shows that the level of health protection embedded in the studied thresholds may differ by three orders of magnitude, even in similar exposure settings. This is likely to confuse the common understanding of the toxicity and health risks of PFAS and undermine reasonable decision-making and the equal treatment of different stakeholders. We also indicate that currently, no consensus exists on the appropriate level of required health protection regarding PFAS and that the recently adopted tolerable intake value in the EU is too cautious. Based on our analysis, we propose some simple solutions on how the studied regulations and their implicit PFAS thresholds or their application could be improved. We further conclude that instead of setting EU-wide PFAS thresholds for all the environmental compartments, providing the member states with the flexibility to consider case-specific factors, such as regional background concentrations or food consumption rates, in their national regulatory procedures would likely result in more sustainable management of environmental PFAS without compromising the scientific foundation of risk assessment, the legitimacy of the EU policy framework and public health.


Subject(s)
European Union , Fluorocarbons , Risk Assessment , Fluorocarbons/analysis , Humans , Environmental Pollutants/analysis , Environmental Exposure , Drinking Water/chemistry
10.
Wei Sheng Yan Jiu ; 53(2): 310-315, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604969

ABSTRACT

OBJECTIVE: To establish a method for twelve halobenzoquinones(HBQs) in drinking water by solid phase extraction-ultra-performance liquid chromatography coupled with electrospray-tandem mass spectrometry(SPE-UPLC-MS/MS). METHODS: The drinking water was acidified with formic acid and concentrated by Bond Elut Plexa solid phase extraction column. The sample solution was separated using Waters ACQUITY HSS T3 column(100 mm×2.1 mm, 1.8 µm) with gradient elution using methanol-water containing 0.1% formic acid as mobile phase. The target compouds were detected in negtive electrospray ionization(ESI~-) and multiple reaction monitoring. RESULTS: The concentration of twelve HBQs showed good linearity in the range 5.0-150.0 ng/mL, respectively, with the correlation coefficients greater than 0.999. The limits of detection(LOD) of twelve HBQs were lower than 2.0 ng/mL, and the limits of quantification(LOQ) for twelve HBQs were lower than 5.0 ng/mL, respectively. The recoveries of three levels in the matrix were 70.0%-84.0%. The matrix effffect was 0.08-0.64. CONCLUSION: The SPE-UPLC-MS/MS method has high sensitivity, good accuracy and fast analysis speed for the detection of halobenzoquinones in drinking water.


Subject(s)
Drinking Water , Formates , Tandem Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Drinking Water/chemistry , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction
11.
Environ Sci Pollut Res Int ; 31(18): 26555-26566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448769

ABSTRACT

Drinking water is vital for human health and life, but detecting multiple contaminants in it is challenging. Traditional testing methods are both time-consuming and labor-intensive, lacking the ability to capture abrupt changes in water quality over brief intervals. This paper proposes a direct analysis and rapid detection method of three indicators of arsenic, cadmium, and selenium in complex drinking water systems by combining a novel long-path spectral imager with machine learning models. Our technique can obtain multiple parameters in about 1 s. The experiment involved setting up samples from various drinking water backgrounds and mixed groups, totaling 9360 injections. A raw visible light source ranging from 380 to 780 nm was utilized, uniformly dispersing light into the sample cell through a filter. The residual beam was captured by a high-definition camera, forming a distinctive spectrum. Three deep learning models-ResNet-50, SqueezeNet V1.1, and GoogLeNet Inception V1-were employed. Datasets were divided into training, validation, and test sets in a 6:2:2 ratio, and prediction performance across different datasets was assessed using the coefficient of determination and root mean square error. The experimental results show that a well-trained machine learning model can extract a lot of feature image information and quickly predict multi-dimensional drinking water indicators with almost no preprocessing. The model's prediction performance is stable under different background drinking water systems. The method is accurate, efficient, and real-time and can be widely used in actual water supply systems. This study can improve the efficiency of water quality monitoring and treatment in water supply systems, and the method's potential for environmental monitoring, food safety, industrial testing, and other fields can be further explored in the future.


Subject(s)
Drinking Water , Environmental Monitoring , Machine Learning , Water Pollutants, Chemical , Water Supply , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Water Quality , Arsenic/analysis , Cadmium/analysis
12.
Environ Health Perspect ; 132(3): 37007, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38534131

ABSTRACT

BACKGROUND: Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE: The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS: A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS: A 47% reduction in urinary arsenic [geometric mean (GM)=13.2 to 7.0µg/g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM=14.6 to 6.55µg/g creatinine) and 30% in the Intensive arm (GM=11.2 to 7.82µg/g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION: Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.


Subject(s)
Arsenic , Drinking Water , Humans , American Indian or Alaska Native , Arsenic/urine , Creatinine , Drinking Water/chemistry , Telemedicine
13.
Environ Monit Assess ; 196(4): 365, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483634

ABSTRACT

Identifying factors contributing to water salinity is paramount in efficiently managing limited water resources in arid environments. The primary objective of this study is to enhance understanding regarding the hydrochemistry, source, and mechanism of water salinity, as well as to assess the suitability of water for various uses in southern Iraq. The groundwater samples were collected from water wells and springs and analyzed for major cations and anions along with stable isotopes (δ18O and δ2H) to accomplish the objective. The analysis of major ion chemistry, hydrochemical techniques, principal component analysis (PCA), and isotope signatures were adopted to determine the primary factors contributing to water mineralization. The study inferred that evaporation and geological processes encompassing water-rock interactions, such as dissolution precipitation and ion exchange, were key processes. The stable isotope analysis revealed that the water originated from meteoric sources and underwent significant evaporation during or before infiltration. The utility assessment of water samples indicates that most samples are not appropriate for consumption and are significantly below the established standards for potable water. In contrast, a significant portion of the groundwater samples were found to meet the criteria for irrigation suitability by adopting Wilcox and the US Salinity Laboratory criteria. The groundwater could be considered for irrigation with proper salinity control management. Overall, this study has significantly improved the understanding of the hydrogeochemical regimes and acts as a first step toward the sustainable utilization of water resources.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Environmental Monitoring/methods , Salinity , Iraq , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Drinking Water/chemistry , Isotopes/analysis
14.
Nutr Hosp ; 41(2): 439-446, 2024 Apr 26.
Article in Spanish | MEDLINE | ID: mdl-38328922

ABSTRACT

Introduction: Introduction: depressive symptoms may develop in subclinical hypothyroidism and their presence usually facilitates recognition and the establishment of replacement treatment; however, recent studies have found no association between the two. Besides, thyroid function can be affected by endocrine disruptors and some of them, such as chlorates, can be found in the water we drink. Objectives: to know if the type of water consumed may influence the development of depressive symptoms in patients with subclinical hypothyroidism. Methods: 96 women with subclinical hypothyroidism, without thyroid treatment, were enrolled. We studied, among other variables, the presence of depressive symptoms, type of water consumption (tap, bottled or spring) and the level of chlorates in the tap water. Results: 41.7 % (40) of women presented depressive symptoms and these were related to the consumption of tap water (p = 0.001), resulting in a reliable predictor (OR, 27.79; p = 0.007). Chlorate level in the tap water was 250 µg/L, a value within the maximum limit allowed by law. Conclusions: chronic exposure to chlorates in water, in women with subclinical hypothyroidism, at levels authorized by law, could favor the inhibition of iodine transport and the appearance of depressive symptoms. It would be interesting to test this hypothesis as well as its possible effect on other population profiles.


Introducción: Introducción: en el hipotiroidismo subclínico pueden aparecer síntomas depresivos y su presencia suele facilitar la instauración de un tratamiento de reemplazo; sin embargo, estudios recientes no han encontrado una asociación entre ambos. Por otra parte, la función tiroidea puede verse afectada por disruptores endocrinos y, algunos de ellos, como los cloratos, pueden encontrarse en el agua que bebemos. Objetivos: conocer si el tipo de consumo de agua puede influir en la aparición de síntomas depresivos en pacientes con hipotiroidismo subclínico. Métodos: participaron 96 mujeres con hipotiroidismo subclínico, sin tratamiento tiroideo, de un área de salud de España. Estudiamos, entre otras variables, la presencia de síntomas depresivos, el tipo de consumo de agua (grifo/embotellada o manantial) y el nivel de cloratos en el agua del grifo. Resultados: el 41,7 % (40) de las mujeres presentaban síntomas depresivos y estos se relacionaban con el consumo de agua del grifo (p = 0,001), resultando este un predictor confiable (OR: 27,79; p = 0,007). El nivel de cloratos en el agua del grifo era de 250 µg/L, valor situado en el límite máximo permitido por la ley. Conclusiones: en mujeres con hipotiroidismo subclínico, la exposición crónica a cloratos en el agua, en niveles autorizados por la ley, podría favorecer la inhibición del transporte de yodo y la aparición de síntomas depresivos. Sería interesante comprobar esta hipótesis, así como su posible efecto sobre otros perfiles poblacionales.


Subject(s)
Chlorates , Depression , Drinking Water , Hypothyroidism , Humans , Female , Hypothyroidism/epidemiology , Hypothyroidism/psychology , Depression/epidemiology , Depression/etiology , Middle Aged , Adult , Drinking Water/chemistry , Aged
15.
Environ Health Perspect ; 132(2): 27002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306197

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFAS) are widely used, ubiquitous, and highly persistent man-made chemicals. Groundwater of a vast area of the Veneto Region (northeastern Italy) was found to be contaminated by PFAS from a manufacturing plant active since the late 1960s. As a result, residents were overexposed to PFAS through drinking water until 2013, mainly to perfluorooctanoic acid (PFOA). OBJECTIVES: The aim of the present study was to estimate the rates of decline in serum PFOA and their corresponding serum half-lives, while characterizing their determinants. METHODS: We investigated 5,860 subjects more than 14 years of age who enrolled in the second surveillance round of the regional health surveillance program. Two blood samples were collected between 2017 and 2022 (average time between measurements: 4 years). Serum PFOA excretion rates and half-lives were estimated based on linear mixed effect models, modeling subject-specific serum PFOA concentrations over time and correcting for background concentrations. For modeling determinants of half-life [age, sex, body mass index (BMI), smoking-habit, alcohol consumption, and estimated glomerular filtration rate (eGFR)], we added interaction terms between each covariate and the elapsed time between measurements. Perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) apparent half-lives were also estimated. A separate analysis was conducted in children (n=480). All analyses were stratified by sex. RESULTS: Median initial serum concentrations of PFOA was 49 ng/mL (range: 0.5-1,090), with a median reduction of 62.45%. The mean estimated PFOA half-life was 2.36 years [95% confidence interval (CI): 2.33, 2.40], shorter in women (2.04; 95% CI: 2.00, 2.08) compared to men (2.83; 95% CI: 2.78, 2.89). Half-lives varied when stratified by some contributing factors, with faster excretion rates in nonsmokers and nonalcohol drinkers (especially in males). CONCLUSIONS: This study, to our knowledge the largest on PFOA half-life, provides precise estimates in young adults whose exposure via drinking water has largely ceased. For other PFAS, longer half-lives than reported in other studies can be explained by some ongoing exposure to PFAS via other routes. https://doi.org/10.1289/EHP13152.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Male , Child , Young Adult , Humans , Female , Drinking Water/chemistry , Environmental Exposure/analysis , Longitudinal Studies , Half-Life , Water Pollutants, Chemical/analysis , Caprylates
16.
Science ; 383(6683): 579, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330108
17.
Sci Total Environ ; 914: 169932, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199359

ABSTRACT

Point-of-use (POU) filters certified to remove lead are often composed of activated carbon and have been shown to release high concentrations of bacteria, including opportunistic pathogens. In this study, we examine the impacts of the common corrosion inhibitor phosphate on biofilm characteristics and the relationship between biofilm structure and bacterial release from POU filters. This knowledge is essential for understanding how best to use the filters and where these filters fit in a system where other lead contamination prevention measures may be in place. We measured the bacterial release from activated carbon POU filters fed with groundwater - a common source of drinking water - with and without phosphate. We used optical coherence tomography (OCT) to quantitatively characterize biofilm growing on activated carbon filter material in which the biofilms were fed groundwater with and without phosphate. Phosphate filters released significantly less (57-87 %) bacteria than groundwater filters, and phosphate biofilms (median thickness: 82-331 µm) grew to be significantly thicker than groundwater biofilms (median thickness: 122-221 µm). The phosphate biofilm roughness ranged from 97 to 142 % of the groundwater biofilm roughness and was significantly greater in most weeks. Phosphate biofilms also had fewer pores per biofilm volume and shorter channels connecting those pores.


Subject(s)
Charcoal , Drinking Water , Phosphates , Bacteria , Drinking Water/chemistry , Biofilms
18.
J Hazard Mater ; 466: 133035, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266585

ABSTRACT

Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERß) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERß in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.


Subject(s)
Drinking Water , Endocrine Disruptors , Pregnancy , Female , Male , Animals , Mice , Drinking Water/chemistry , Disinfection , Dichloroacetic Acid/analysis , Trichloroacetic Acid/toxicity , Endocrine Disruptors/toxicity , Estrogen Receptor alpha , Estrogen Receptor beta
19.
Water Res ; 249: 120921, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38039817

ABSTRACT

Rapid sand filtration (RSF) is used during drinking water production for removal of particles, possible harmful microorganisms, organic material and inorganic compounds such as iron, manganese, ammonium and methane. However, RSF can also be used for removal of certain organic micropollutants (OMPs). In this study, it was investigated if OMP removal in columns packed with sand from full scale RSFs could be stimulated by bioaugmentation (i.e. inoculating RSFs with sand from another RSF) and/or biostimulation (i.e. addition of nutrients, vitamins and trace-elements that stimulate microbial growth). The results showed that removal of PFOA, carbamazepine, 1-H benzotriazole, amidotrizoate and iopamidol in the columns was low (< 20 %). Propranolol and diclofenac removal was higher (50-60 %) and propranolol removal likely occurred via sorption processes, whereas for diclofenac it was unclear if removal was a combination of physical-chemical and biological processes. Moreover, bioaugmentation and biostimulation resulted in 99 % removal of gabapentin and metoprolol after 38 days and 99 % removal of acesulfame after 52 days of incubation. The bioaugmented column without biostimulation showed 99 % removal for gabapentin and metoprolol after 52 days, and for acesulfame after 80 days. In contrast, the non-bioaugmented column did not remove gabapentin, removed < 40 % metoprolol and showed 99 % removal of acesulfame only after 80 days of incubation. Removal of these OMPs was negatively correlated with ammonium oxidation and the absolute abundance of ammonia-oxidizing bacteria. 16S rRNA gene sequencing showed that OMP removal of acesulfame, gabapentin and metoprolol was positively correlated to the relative abundance of specific bacterial genera that harbor species with a heterotrophic and aerobic or denitrifying metabolism. These results show that bioaugmentation of RSF can be successful for OMP removal, where biostimulation can accelerate this removal.


Subject(s)
Ammonium Compounds , Drinking Water , Water Pollutants, Chemical , Water Purification , Biodegradation, Environmental , Drinking Water/chemistry , RNA, Ribosomal, 16S/genetics , Diclofenac , Gabapentin , Metoprolol , Propranolol , Filtration/methods , Water Pollutants, Chemical/analysis , Water Purification/methods
20.
Anal Sci ; 40(2): 309-317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980326

ABSTRACT

Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKß2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 µg/L and 0.89 µg/L, respectively. For speciation, these limits were calculated to be 50 µg/L and 200 µg/L, respectively.


Subject(s)
Arsenic , Arsenites , Drinking Water , Humans , Drinking Water/chemistry , Arsenic/analysis , Arsenates , X-Rays , Spectrum Analysis , Aluminum Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...